By Topic

Learning to predict slip for ground robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Angelova, A. ; Dept. of Comput. Sci., California Inst. of Technol., Pasadena, CA ; Matthies, L. ; Helmick, D. ; Sibley, G.
more authors

In this paper we predict the amount of slip an exploration rover would experience using stereo imagery by learning from previous examples of traversing similar terrain. To do that, the information of terrain appearance and geometry regarding some location is correlated to the slip measured by the rover while this location is being traversed. This relationship is learned from previous experience, so slip can be predicted later at a distance from visual information only. The advantages of the approach are: 1) learning from examples allows the system to adapt to unknown terrains rather than using fixed heuristics or predefined rules; 2) the feedback about the observed slip is received from the vehicle's own sensors which can fully automate the process; 3) learning slip from previous experience can replace complex mechanical modeling of vehicle or terrain, which is time consuming and not necessarily feasible. Predicting slip is motivated by the need to assess the risk of getting trapped before entering a particular terrain. For example, a planning algorithm can utilize slip information by taking into consideration that a slippery terrain is costly or hazardous to traverse. A generic nonlinear regression framework is proposed in which the terrain type is determined from appearance and then a nonlinear model of slip is learned for a particular terrain type. In this paper we focus only on the latter problem and provide slip learning and prediction results for terrain types, such as soil, sand, gravel, and asphalt. The slip prediction error achieved is about 15% which is comparable to the measurement errors for slip itself

Published in:

Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on

Date of Conference:

15-19 May 2006