By Topic

Adapting proposal distributions for accurate, efficient mobile robot localization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Beeson, P. ; Dept. of Comput. Sci., Texas Univ., Austin, TX ; Murarka, A. ; Kuipers, B.

When performing probabilistic localization using a particle filter, a robot must have a good proposal distribution in which to distribute its particles. Once weighted by their normalized likelihood scores, these particles estimate a posterior distribution over the possible poses of the robot. This paper 1) introduces a new action model (the system of equations used to determine the proposal distribution at each time step) that can run on any differential drive robot, even from log file data, 2) investigates the results of different algorithms that modify the proposal distribution at each time step in order to obtain more accurate localization, 3) investigates the results of incrementally adapting the action model parameters based on recent localization results in order to obtain proposal distributions that better approximate the true posteriors. The results show that by adapting the action model over time and, when necessary, modifying the resulting proposal distributions at each time step, localization improves-the maximum likelihood score increases and, when possible, the percentage of wasted particles decreases

Published in:

Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on

Date of Conference:

15-19 May 2006