Cart (Loading....) | Create Account
Close category search window
 

Bounded torque control for robot manipulators subject to joint velocity constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ngo, K.B. ; Fac. of Eng. & IT, Australian Nat. Univ., Acton, ACT ; Mahony, R.

This paper presents a bounded torque control design to solve the set-point regulation problem for robot manipulators subject to joint velocity constraints. The control objectives are achieved by exploiting the passivity properties of the system and utilizing barrier function ideas to reshape the control Lyapunov function. The structure of the modified control Lyapunov function is reminiscent of those used in the artificial potential field method. The resulting controllers are modified proportional-derivative controllers which are simple, intuitive, and can easily be implemented in practice. In addition, asymptotic stability of the closed-loop system is guaranteed, all joint velocity constraints are strictly satisfied for all time, and the demanded torque input is bounded in norm, irrespective of the initial condition. The effectiveness of the proposed control design is demonstrated through simulations on a 2-link planar manipulator

Published in:

Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on

Date of Conference:

15-19 May 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.