By Topic

Gallager first bounding technique for the performance evaluation of maximum-likelihood decoded linear binary block codes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Yousefi, S. ; Dept. of Electr. Comput. Eng., Queen''s Univ., Kingston, Ont., Canada

Exact bit or frame error rate expressions for most communication systems are either too complex or unlikely to exist in nice closed forms. A good alternative is to bound the performance measure by tight enough lower and upper bounds. Many tight upper bounds on the error probability of binary codes are based on the so-called Gallager's first bounding technique (GFBT). In this method, Gallager splits the error probability to the joint probability of error and noise residing in a region ℜ (here referred to as the Gallager region) plus joint probability of error and noise residing in the complement of ℜ (also referred to as regions of many and few errors, respectively); where ℜ is a volume around the transmitted codeword. A comprehensive study of a number of upper bounds on the error probability of ML decoding of binary codes based on GFBT is provided. For some bounds, their applicability to other schemes and channels is also pointed out and argued.

Published in:

Communications, IEE Proceedings-  (Volume:153 ,  Issue: 3 )