By Topic

Three-Dimensional Volume Reconstruction Based on Trajectory Fusion from Confocal Laser Scanning Microscope Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lee, S.-C. ; University of Illinois at Urbana-Champaign ; Bajcsy, P.

In this paper, we address the problem of 3D volume reconstruction from depth adjacent subvolumes (i.e., sets of image frames) acquired using a confocal laser scanning microscope (CLSM). Our goal is to align sub-volumes by estimating an optimal global image transformation which preserves morphological smoothness of medical structures (called features, e.g., blood vessels) inside of a reconstructed 3D volume. We approached the problem by learning morphological characteristics of structures inside of each sub-volume, i.e. centroid trajectories of features. Next, adjacent sub-volumes are aligned by fusing the morphological characteristics of structures using extrapolation or model fitting. Finally, a global sub-volume to subvolume transformation is computed based on the entire set of fused structures. The trajectory-based 3D volume reconstruction method described here is evaluated with a pair of consecutive physical sections using two evaluation metrics for morphological continu

Published in:

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on  (Volume:2 )

Date of Conference:

2006