By Topic

3D Face Recognition Using 3D Alignment for PCA

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
T. Russ ; Sandia National Labs Albuquerque, NM ; C. Boehnen ; T. Peters

This paper presents a 3D approach for recognizing faces based on Principal Component Analysis (PCA). The approach addresses the issue of proper 3D face alignment required by PCA for maximum data compression and good generalization performance for new untrained faces. This issue has traditionally been addressed by 2D data normalization, a step that eliminates 3D object size information important for the recognition process. We achieve correspondence of facial points by registering a 3D face to a scaled generic 3D reference face and subsequently perform a surface normal search algorithm. 3D scaling of the generic reference face is performed to enable better alignment of facial points while preserving important 3D size information in the input face. The benefits of this approach for 3D face recognition and dimensionality reduction have been demonstrated on components of the Face Recognition Grand Challenge (FRGC) database versions 1 and 2.

Published in:

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)  (Volume:2 )

Date of Conference: