By Topic

Noise Estimation from a Single Image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

In order to work well, many computer vision algorithms require that their parameters be adjusted according to the image noise level, making it an important quantity to estimate. We show how to estimate an upper bound on the noise level from a single image based on a piecewise smooth image prior model and measured CCD camera response functions. We also learn the space of noise level functions how noise level changes with respect to brightness and use Bayesian MAP inference to infer the noise level function from a single image. We illustrate the utility of this noise estimation for two algorithms: edge detection and featurepreserving smoothing through bilateral filtering. For a variety of different noise levels, we obtain good results for both these algorithms with no user-specified inputs.

Published in:

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

17-22 June 2006