By Topic

Interactive Feature Tracking using K-D Trees and Dynamic Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Buchanan ; University of Oxford, UK ; A. Fitzgibbon

A new approach to template tracking is presented, incorporating three distinct contributions. Firstly, an explicit definition for a feature track is given. Secondly, the advantages of an image preprocessing stage are demonstrated and, in particular, the effectiveness of highly compressed image patch data stored in k-d trees for fast and discriminatory image patch searches. Thirdly, the k-d trees are used to generate multiple track hypotheses which are efficiently merged to give the optimal solution using dynamic programming. The explicit separation of feature detection and trajectory determination creates the basis for the novel use of k-d trees and dynamic programming. Multiple appearances and occlusion handling are seamlessly integrated into this framework. Appearance variation through the sequence is robustly handled in an iterative process. The work presented is a significant foundation for a powerful off-line feature tracking system, particularly in the context of interactive applications.

Published in:

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)  (Volume:1 )

Date of Conference:

17-22 June 2006