By Topic

Feature Selection for Evaluating Fluorescence Microscopy Images in Genome-Wide Cell Screens

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
V. Kovalev ; University of Heidelberg ; N. Harder ; B. Neumann ; M. Held
more authors

We investigate different approaches for efficient feature space reduction and compare different methods for cell classification. The application context is the development of automatic methods for analysing fluorescence microscopy images with the goal to identify those genes that are involved in the mitosis of human cells (cell division). We distinguish four cell classes comprising interphase cells, mitotic cells, apoptotic cells, and cells with clustered nuclei. Feature space reduction was performed using the Principal Component Analysis and Independent Component Analysis methods. Six classification methods were examined including unsupervised clustering algorithms such as K-means, Hard Competitive Learning, and Neural Gas as well as Hierarchical Clustering, Support Vector Machines, and Random Forests classifiers. Detailed results on the cell image classification accuracy and computational efficiency achieved using different feature sets and different classification methods are reported.

Published in:

2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)  (Volume:1 )

Date of Conference:

17-22 June 2006