By Topic

Discriminative Learning of Mixture of Bayesian Network Classifiers for Sequence Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Minyoung Kim ; Rutgers University ; Pavlovic, V.

A mixture of Bayesian Network Classifiers(BNC) has a potential to yield superior classification and generative performance to a single BNC model. We introduce novel discriminative learning methods for mixtures of BNCs. Unlike a single BNC model where the discriminative learning resorts to a gradient search, we can exploit the properties of a mixture to alleviate the complex learning task. The proposed method adds mixture components recursively via functional gradient boosting while maximizing the conditional likelihood. This method is highly efficient as it reduces to generative learning of a base BNC model on weighed data. The proposed approach is particularly suited to sequence classification problems where the kernels in the base model are usually too complex for effective gradient search. We demonstrate the improved classification performance of the proposed methods in an extensive set of evaluations on time-series sequence data, including human motion classification problems.

Published in:

Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on  (Volume:1 )

Date of Conference:

17-22 June 2006