By Topic

Generalized Multiclass AdaBoost and Its Applications to Multimedia Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Hao ; Kodak Research Labs Eastman Kodak Company ; Jiebo Luo

AdaBoost has received considerable attention in the vision and multimedia research community in recent years. It is originally designed for two-class classification problems. To handle multiple classes, many AdaBoost extensions have been developed primarily based on various schemes for reducing multiclass classification to multiple two-class problems. From a statistical prospective, AdaBoost can be viewed as a forward stepwise additive model using an exponential loss function. In this paper, we derive a generalized form of AdaBoost for multiclass classification based on a multiclass exponential loss function. To prove its effectiveness, we benchmarked a number of multimedia problems of different nature. Experimental results show that the new boosting algorithm outperforms other multiclass alternatives. In addition, the generalized boosting algorithm can be used to either boost a multiclass classifier, or build a multiclass classifier from a binary one.

Published in:

Computer Vision and Pattern Recognition Workshop, 2006. CVPRW '06. Conference on

Date of Conference:

17-22 June 2006