By Topic

Object Boundary Detection in Images using a Semantic Ontology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Hoogs ; GE Global Research One Research Circle, NY ; R. Collins

We present a novel method for detecting the boundaries between objects in images that uses a large, hierarchical, semantic ontology - WordNet. The semantic object hierarchy in WordNet grounds this ill-posed segmentation problem, so that true boundaries are defined as edges between instances of different classes, and all other edges are clutter. To avoid fully classifying each pixel, which is very difficult in generic images, we evaluate the semantic similarity of the two regions bounding each edge in an initial oversegmentation. Semantic similarity is computed using WordNet enhanced with appearance information, and is largely orthogonal to visual similarity. Hence two regions with very similar visual attributes, but from different categories, can have a large semantic distance and therefore evidence of a strong boundary between them, and vice versa. The ontology is trained with images from the UC Berkeley image segmentation benchmark, extended with manual labeling of the semantic content of each image segment. Results on boundary detection against the benchmark images show that semantic similarity computed through WordNet can significantly improve boundary detection compared to generic segmentation.

Published in:

2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06)

Date of Conference:

17-22 June 2006