By Topic

Discriminative Patch Selection using Combinatorial and Statistical Models for Patch-Based Object Recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Vashist, A. ; Rutgers, The State University of New Jersey, USA ; Zhipeng Zhao ; Elgammal, A. ; Muchnik, I.
more authors

In an object recognition task where an image is represented as a constellation of image patches, often many patches correspond to the cluttered background. If such patches are used for object class recognition, they will adversely affect the recognition rate. In this paper, we present a two stage method for selecting image patches which characterize the target object class and are capable of discriminating between the positive images containing the target objects and the complementary negative images. The first stage selection is done using a novel combinatorial optimization formulation on a weighted multipartite graph representing similarities between images patches across different instances of the target object. The following stage is a statistical method for selecting those images patches from the positive images which, when used individually, have the power of discriminating between the positive and negative images in the evaluation data. The individual methods have a performance competitive with the state of the art methods on a popular benchmark data set and their sequential combination consistently outperforms the individual methods and most of the other known methods while approaching the best known results.

Published in:

Computer Vision and Pattern Recognition Workshop, 2006. CVPRW '06. Conference on

Date of Conference:

17-22 June 2006