By Topic

An Iterative Super-Resolution Reconstruction of Image Sequences using a Bayesian Approach with BTV prior and Affine Block-Based Registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
V. Patanavijit ; Chulalongkorn University, Bangkok, Thailand ; S. Jitapunkul

The traditional SR image registrations are based on translation motion model therefore super-resolution applications can apply only on the sequences that have simple translation motion. In this paper, we present a novel image registration, the fast affine block-based registration, for performing super-resolution using multiple images. We propose super-resolution reconstruction that uses a high accuracy registration algorithm, the fast affine block-based registration [15], and is based on a maximum a posteriori estimation technique by minimizing a cost function. The L1 norm is used for measuring the difference between the projected estimate of the high-resolution image and each low resolution image, removing outliers in the data and errors due to possibly inaccurate motion estimation. Bilateral regularization is used as prior knowledge for removing outliers, resulting in sharp edges and forcing interpolation along the edges and not across them. The experimental results show that the proposed reconstruction can apply on real sequence such as Suzie.

Published in:

The 3rd Canadian Conference on Computer and Robot Vision (CRV'06)

Date of Conference:

07-09 June 2006