By Topic

A framework to develop symbolic performance models of parallel applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
S. R. Alam ; Oak Ridge Nat. Lab., TN, USA ; J. S. Vetter

Performance and workload modeling has numerous uses at every stage of the high-end computing lifecycle: design, integration, procurement, installation and tuning. Despite the tremendous usefulness of performance models, their construction remains largely a manual, complex, and time-consuming exercise. We propose a new approach to the model construction, called modeling assertions (MA), which borrows advantages from both the empirical and analytical modeling techniques. This strategy has many advantages over traditional methods: incremental construction of realistic performance models, straightforward model validation against empirical data, and intuitive error bounding on individual model terms. We demonstrate this new technique on the NAS parallel CG and SP benchmarks by constructing high fidelity models for the floating-point operation cost, memory requirements, and MPI message volume. These models are driven by a small number of key input parameters thereby allowing efficient design space exploration of future problem sizes and architectures

Published in:

Proceedings 20th IEEE International Parallel & Distributed Processing Symposium

Date of Conference:

25-29 April 2006