By Topic

Power-performance efficiency of asymmetric multiprocessors for multi-threaded scientific applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Grant, R.E. ; Dept. of Electr. & Comput. Eng., Queen''s Univ. Kingston, Canada ; Afsahi, A.

Recently, under a fixed power budget, asymmetric multiprocessors (AMP) have been proposed to improve the performance of multi-threaded applications compared to symmetric multiprocessors. An AMP is a multiprocessor system in which its processors are not operating at the same frequency. Power consumption has become an important design constraint in servers and high-performance server clusters. This paper explores the power-performance efficiency of hyper-threaded (HT) AMP servers, and proposes a new scheduling algorithm that can be used to reduce the overall power consumption of a server while maintaining a high level of performance. Prototyping AMPs on a commercial 4-way SMP server, we show that on average 15.6% energy savings and 6.1% slowdown for the HT-disabled case, and 7.1% energy savings and 4.8% slowdown for the HT-enabled case can be achieved across NAS and SPEC OpenMP applications.

Published in:

Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International

Date of Conference:

25-29 April 2006