By Topic

Phylogenetic models of rate heterogeneity: a high performance computing perspective

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Stamatakis ; Inst. of Comput. Sci., Found. for Res. & Technol.-Hellas, Heraklion, Greece

Inference of phylogenetic trees using the maximum likelihood (ML) method is NP-hard. Furthermore, the computation of the likelihood function for huge trees of more than 1,000 organisms is computationally intensive due to a large amount of floating point operations and high memory consumption. Within this context, the present paper compares two competing mathematical models that account for evolutionary rate heterogeneity: the Gamma and CAT models. The intention of this paper is to show that - from a purely empirical point of view - CAT can be used instead of Gamma. The main advantage of CAT over Gamma consists in significantly lower memory consumption and faster inference times. An experimental study using RAxML has been performed on 19 real-world datasets comprising 73 up to 1,663 DNA sequences. Results show that CAT is on average 5.5 times faster than Gamma and - surprisingly enough - also yields trees with slightly superior Gamma likelihood values. The usage of the CAT model decreases the amount of average L2 and L3 cache misses by factor 8.55

Published in:

Proceedings 20th IEEE International Parallel & Distributed Processing Symposium

Date of Conference:

25-29 April 2006