By Topic

RAPID: an end-system aware protocol for intelligent data transfer over lambda grids

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Banerjee, A. ; Dept. of Comput. Sci., California Univ., Davis, CA ; Wu-chun Feng ; Mukherjee, B. ; Ghosal, D.

Next-generation e-science applications will require the ability to transfer information at high data rates between distributed computing centers and data repositories. To support such applications, lambda grid networks have been built to provide large, on-demand bandwidth between end-points that are interconnected via optical circuit-switched lambdas. It is extremely important to develop an efficient transport protocol over such high-capacity, dedicated circuits. Because lambdas provide dedicated bandwidth between endpoints, they obviate the need for network congestion control. Consequently, past research has demonstrated that rate-based transport protocols, such as RBUDP, are more effective than TCP in transferring data over lambdas. However, while lambdas eliminate congestion in the network, they ultimately push the congestion to the endpoints - congestion that current rate-based transport protocols are ill-suited to handle. In this paper we introduce a "rate-adaptive protocol for intelligent delivery (RAPID)" of data that is lightweight and end-system performance-aware, so as to maximize end-to-end throughput while minimizing packet loss. Based on self monitoring of the dynamic task-priority at the receiving end-system, our protocol enables the receiver to proactively deliver feedback to the sender, so that the sender may adapt its sending rate to avoid congestion at the receiving end-system. This avoids large bursts of packet losses typically observed in current rate-based transport protocols. Over a 10-Gigabit link emulation of an optical circuit, RAPID reduces file-transfer time, and hence improves end-to-end throughput by as much as 25%

Published in:

Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International

Date of Conference:

25-29 April 2006