Cart (Loading....) | Create Account
Close category search window
 

Using virtual grids to simplify application scheduling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huang, R. ; Comput. Sci. & Eng. & Center for Networked Syst., California Univ., San Diego, CA ; Casanova, H. ; Chien, A.

Users and developers of grid applications have access to increasing numbers of resources. While more resources generally mean higher capabilities for an application, they also raise the issue of application scheduling scalability. First, even polynomial time scheduling heuristics may take a prohibitively long time to compute a schedule. Second, and perhaps more critical, it may not be possible to gather all the resource information needed by a scheduling algorithm in a scalable manner. Our application focus is scientific workflows, which can be represented as directed acyclic graphs (DAGs). Our claim is that, in future resource-rich environments, simple scheduling algorithms may be sufficient to achieve good workflow performances. We introduce a scalable scheduling approach that uses a resource abstraction called a virtual grid (VG). Our simulations of a range of typical DAG structures and resources demonstrate that a simple greedy scheduling heuristic combined with the virtual grid abstraction is as effective and more scalable than more complex heuristic DAG scheduling algorithms on large-scale platforms

Published in:

Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International

Date of Conference:

25-29 April 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.