By Topic

Bitmap indexes for large scientific data sets: a case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sinha, R.R. ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL ; Mitra, S. ; Winslett, M.

The data used by today's scientific applications are often very high in dimensionality and staggering in size. These characteristics necessitate the use of a good multidimensional indexing strategy to provide efficient access to the data. Researchers have previously proposed the use of bitmap indexes for high-dimension scientific data as a way of overcoming the drawbacks of traditional multidimensional indexes such as R-trees and KD-trees, which are bulky and whose performance does not scale well as the number of dimensions increases. However, the techniques proposed in previous work on bitmap indexes are not sufficient to address all problems that arise in practice. In experiments with real datasets, we experienced problems with index size and query performance. To overcome these shortcomings, we propose the use of adaptive, multilevel, multi-resolution bitmap indexes, and evaluate their performance in two scientific domains. Our preliminary experiments with a parallel query processor and index creator also show that it is very easy to parallelize a bitmap index

Published in:

Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International

Date of Conference:

25-29 April 2006