By Topic

Analytical performance modelling of adaptive wormhole routing in the star interconnection network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kiasari, A.E. ; IPM Sch. of Comput. Sci., Tehran ; Sarbazi-Azad, H. ; Ould-Khaoua, M.

The star graph was introduced as an attractive alternative to the well-known hypercube and its properties have been well studied in the past. Most of these studies have focused on topological properties and algorithmic aspects of this network. Although several analytical models have been proposed in the literature for different interconnection networks, none of them have dealt with star graphs. This paper proposes the first analytical model to predict message latency in wormhole-switched star interconnection networks with fully adaptive routing. The analysis focuses on a fully adaptive routing algorithm which has shown to be the most effective for star graphs. The results obtained from simulation experiments confirm that the proposed model exhibits a good accuracy under different operating conditions

Published in:

Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International

Date of Conference:

25-29 April 2006