By Topic

A Development of Joint Mechanism of Robot Arm Based on Human Shoulder Morphology

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sakai, N. ; Dept. of Intelligent Machinery & Syst., Kyushu Univ., Fukuoka ; Sawae, Y. ; Murakami, T.

The purpose of this study was to develop a new joint system based on human shoulder mechanism. The human shoulder joint has a ball joint mechanism that is surrounded by a number of muscles and is driven by the balance of those forces. The authors thought that the construction could realize 3 degrees of freedom with compact size and lightweight. An anatomical skeletal structure had been introduced to the mechanism, especially on the muscle arrangement. Muscles were replaced by wires and humeral head was altered by a ball joint. The movability of the mechanism was evaluated by the relative ratio of the moment arm to the ball radius produced from the wires that surround the ball joint. Several rearrangements in improvement processes enabled the joint to be driven by 6 wires. Inverse kinematics was solved by artificial neural network (NN) that learned the data sets of arm postures and wire displacements. Additional differential outputs were installed in the NN. The principle of virtual work was applied to drive the joint by a feedback control system in the range of 3 degrees of freedom. The movability and capability of the new joint system was satisfactorily demonstrated in this report

Published in:

Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on

Date of Conference:

20-22 Feb. 2006