Cart (Loading....) | Create Account
Close category search window
 

Multidisciplinary Approach for Developing a New Minimally Invasive Surgical Robotic System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Lum, M.J.H. ; Dept. of Electr. Eng., Washington Univ., Seattle, WA ; Trimble, D. ; Rosen, J. ; Fodero, K.
more authors

The synergy between fundamental science, engineering and medicine is constantly evolving while providing physicians with better tools and techniques for delivering patients effective health care. Minimally invasive surgery (MIS) revolutionized the way in which a number of surgical procedures are performed resulting in quicker postoperative recovery times. Surgical robotics provides a new paradigm to further improve MIS interventions. As part of an extensive experimental protocol, the kinematics and the dynamics of MIS tools were acquired from 30 surgeons who performed seven different minimally invasive surgical tasks. These tasks included tissue manipulation, tissue dissection and suturing in-vivo while using the Blue Dragon system and a porcine model. This database served as a design specification for a kinematic optimization of a spherical surgical robotic manipulator. Following the optimization that determined key geometrical dimensions of the robot, a 7-DOF cable-actuated surgical manipulator was designed and integrated, providing all the degrees of freedom of manual MIS as well as wrist joints located at the surgical end-effector. The surgical robotic system is teleoperated utilizing a single bi-directional UDP socket via a remote master device. This multidisciplinary approach of designing and optimizing the surgical robotic system will lead to a seamless integration into the operating room of the future

Published in:

Biomedical Robotics and Biomechatronics, 2006. BioRob 2006. The First IEEE/RAS-EMBS International Conference on

Date of Conference:

20-22 Feb. 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.