Cart (Loading....) | Create Account
Close category search window

On outer bounds to the capacity region of wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ali Ahmad, S.H. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois, Urbana, IL, USA ; Jovicic, A. ; Viswanath, P.

In this correspondence, we study the capacity region of a general wireless network by deriving fundamental upper bounds on a class of linear functionals of the rate tuples at which joint reliable communication can take place. The widely studied transport capacity is a specific linear functional: the coefficient of the rate between a pair of nodes is equal to the Euclidean distance between them. The upper bound on the linear functionals of the capacity region is used to derive upper bounds to scaling laws for generalized transport capacity: the coefficient of the rate between a pair of nodes is equal to some arbitrary function of the Euclidean distance between them, for a class of minimum distance networks. This upper bound to the scaling law meets that achievable by multihop communication over these networks for a wide class of channel conditions; this shows the optimality, in the scaling-law sense, of multihop communication when studying generalized transport capacity of wireless networks.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.