Cart (Loading....) | Create Account
Close category search window
 

Statistical location detection with sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ray, S. ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA ; Wei Lai ; Paschalidis, I.C.

The paper develops a systematic framework for designing a stochastic location detection system with associated performance guarantees using a wireless sensor network. To detect the location of a mobile sensor, the system relies on RF-characteristics of the signal transmitted by the mobile sensor, as it is received by stationary sensors (clusterheads). Location detection is posed as a hypothesis testing problem over a discretized space. Large deviations results enable the characterization of the probability of error leading to a placement problem that maximizes an information-theoretic distance (Chernoff distance) among all pairs of probability distributions of observations conditional on the sensor locations. The placement problem is shown to be NP-hard and is formulated as a linear integer programming problem; yet, large instances can be solved efficiently by leveraging special-purpose algorithms from the theory of discrete facility location. The resultant optimal placement is shown to provide asymptotic guarantees on the probability of error in location detection under quite general conditions by minimizing an upper bound of the error-exponent. Numerical results show that the proposed framework is computationally feasible and the resultant clusterhead placement performs near-optimal even with a small number of observation samples in a simulation environment.

Published in:

Information Theory, IEEE Transactions on  (Volume:52 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.