By Topic

High fill-factor two-axis gimbaled tip-tilt-piston micromirror array actuated by self-Aligned vertical electrostatic combdrives

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Il Woong Jung ; Dept. of Electr. Eng., Stanford Univ., CA, USA ; U. Krishnamoorthy ; O. Solgaard

In this paper, we present a high fill-factor micromirror array actuated by self-aligned vertical electrostatic combdrives. To meet the requirements of applications in free-space communication and imaging, each micromirror has three degrees of freedom of motion: rotation around two axes in the mirror plane and linear translation perpendicular to the mirror plane. Our approach is to integrate the high fill-factor reflectors into the fabrication process of the actuators on the wafer-scale. Multilevel silicon-on-insulator (SOI) bonding is utilized to form the high optical quality reflectors and high aspect-ratio vertical combdrive actuators. The wiring for electrical access to the multielectrode per pixel array is fabricated on separate wafers by thin film processing, and flip-chip bonded to the reflector/actuator chip. This architecture overcomes the fill-factor limitation of top-side accessed electrical addressing of mirrors made on SOI. Our 360μm pixel size mirror array achieves a 99% fill-factor with optically flat reflectors.

Published in:

Journal of Microelectromechanical Systems  (Volume:15 ,  Issue: 3 )