By Topic

A new version of 2-tuple fuzzy linguistic representation model for computing with words

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jin-Hsien Wang ; Dept. of Ind. Eng. & Manage., Cheng Sieu Univ., Kaohsiung, Taiwan ; Jongyun Hao

In this paper, we provide a new (proportional) 2-tuple fuzzy linguistic representation model for computing with words (CW), which is based on the concept of "symbolic proportion." This concept motivates us to represent the linguistic information by means of 2-tuples, which are composed by two proportional linguistic terms. For clarity and generality, we first study proportional 2-tuples under ordinal contexts. Then, under linguistic contexts and based on canonical characteristic values (CCVs) of linguistic labels, we define many aggregation operators to handle proportional 2-tuple linguistic information in a computational stage for CW without any loss of information. Our approach for this proportional 2-tuple fuzzy linguistic representation model deals with linguistic labels, which do not have to be symmetrically distributed around a medium label and without the traditional requirement of having "equal distance" between them. Moreover, this new model not only provides a space to allow a "continuous" interpolation of a sequence of ordered linguistic labels, but also provides an opportunity to describe the initial linguistic information by members of a "continuous" linguistic scale domain which does not necessarily require the ordered linguistic terms of a linguistic variable being equidistant. Meanwhile, under the assumption of equally informative (which is defined by a condition based on the concept of CCV), we show that our model reduces to Herrera and Martı´nez's (translational) 2-tuple fuzzy linguistic representation model.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:14 ,  Issue: 3 )