By Topic

Interpolation with function space representation of membership functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yeung Yam ; Dept. of Autom. & Comput.-Aided Eng., Chinese Univ. of Hong Kong, China ; Man Lung Wong ; Baranyi, P.

This paper generalizes a previous Cartesian approach for interpolating fuzzy rules comprised of membership functions with finite number of characteristic points. Instead of representing membership functions as points in Cartesian spaces, they now become elements in the space of square, integrable function. Interpolation is thus conducted between the antecedent and consequent function spaces. The generalized representation allows an extended class of membership functions satisfying two monotonicity conditions to be accommodated in the interpolation process. They include the popular bell-shaped membership functions, which were not possible before with the Cartesian representation. The work also extends the similarity triangle-based interpolation technique from the previous Cartesian representation to the new representation. Ensuing issues on computational complexity and nonunique conclusion are discussed. Other concepts such as spanning set and extensibility functions are also presented under the generalized framework. Examples to illustrate the extended approach and to compare with the Cartesian approach are given.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:14 ,  Issue: 3 )