By Topic

Analysis and design equations for phase matching using Bragg reflector waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
West, Brian R. ; Edward S. Rogers Sr. Dept. of Electr. & Comput. Eng., Univ. of Toronto, Ont., Canada ; Helmy, A.S.

In this paper, we introduce and analyze a novel wave-guide design to provide phase matching for nonlinear optical processes. Phase matching is achieved by designing the structure to guide the fundamental frequency by total internal reflection and the second harmonic (SH) frequency by transverse Bragg reflection. By forcing the SH mode to operate in the middle of the Bragg stopband, we solve for the waveguide dimensions for arbitrary waveguide materials, given the material dispersion between the fundamental and SH frequencies. Using GaAs-AlGaAs as an example, we analytically investigate and quantify properties such as nonlinear coupling efficiency, bandwidth, tunability, and limitations due to dispersion. The technique shows tremendous promise when compared to alternate technologies, where it is particularly attractive as an effective means to obtain ultralow-loss nonlinear optical elements for monolithic integration with coherent light sources and other active devices.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 3 )