By Topic

Raman-based silicon photonics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jalali, B. ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Raghunathan, V. ; Dimitropoulos, D. ; Boyraz, O.

This paper reviews recent progress in a new branch of silicon photonics that exploits Raman scattering as a practical and elegant approach for realizing active photonic devices in pure silicon. The large Raman gain in the material, enhanced by the tight optical confinement in Si/SiO2 heterostructures, has enabled the demonstration of the first optical amplifiers and lasers in silicon. Wavelength conversion, between the technologically important wavelength bands of 1300 and 1500 nm, has also been demonstrated through Raman four wave mixing. Since carrier generation through two photon absorption is omnipresent in semiconductors, carrier lifetime is the single most important parameter affecting the performance of silicon Raman devices. A desired reduction in lifetime is attained by reducing the lateral dimensions of the optical waveguide, and by actively removing the carriers with a reverse biased diode. An integrated diode also offers the ability to electrically modulate the optical gain, a unique property not available in fiber Raman devices. Germanium-silicon alloys and superlattices offer the possibility of engineering the otherwise rigid spectrum of Raman in silicon.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 3 )