By Topic

Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Ta'eed, V.G. ; Centre for Ultrahigh-bandwidth Devices for Opt. Syst., Univ. of Sydney, NSW, Australia ; Shokooh-Saremi, M. ; Libin Fu ; Littler, I.C.M.
more authors

We demonstrate integrated all-optical 2R regenerators based on Kerr optical nonlinearities (subpicosecond response) in chalcogenide glass waveguides with integrated Bragg grating filters. By combining a low loss As2S3 rib waveguide with an in-waveguide photo-written Bragg grating filter, we realize an integrated all-optical 2R signal regenerator with the potential to process bit rates in excess of 1 Tb/s. The device operates using a combination of self phase modulation induced spectral broadening followed by a linear filter offset from the input center wavelength. A nonlinear power transfer curve is demonstrated using 1.4 ps pulses, sufficient for suppressing noise in an amplified transmission link. We investigate the role of dispersion on the device transfer characteristics, and discuss future avenues to realizing a device capable of operation at subwatt peak power levels.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:12 ,  Issue: 3 )