By Topic

Spectral FDTD: a novel technique for the analysis of oblique incident plane wave on periodic structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Aminian, A. ; Dept. of Electr. Eng., California Univ., USA ; Rahmat-Samii, Y.

This paper introduces a new technique which calculates the reflection coefficient for the plane wave incident on planar periodic structures. The method referred to as spectral finite-difference time-domain (SFDTD) replaces the conventional single-angle incident wave, with a constant transverse wavenumber (CTW) wave. Because the transverse wavenumbers are constant, the fields have no delay in the transverse plane (x-y plane), and PBC (periodic boundary condition) can be directly implemented in the time domain for both oblique and normal incident waves. The stability criterion for this new FDTD technique is angle-independent and therefore this method works well for incident angles close to grazing (θ=90°) as well as normal incident (θ=0°). This shows the efficiency of the method compared to other available FDTD techniques for the same purpose that force a more restricted stability criterion as angles turns to grazing. The validity of this method is verified by comparing the reflection coefficient calculated by this method with the analytical results of a grounded slab. The results of this technique are also compared with method of moments for a periodic array of metallic patches and a good agreement is observed. A periodic array of metallic patches above a PEC plate is analyzed and the reflection coefficient is calculated over a wide frequency band for angles varying from 0° to close to 90°.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 6 )