By Topic

A spectral Integral method (SIM) for layered media

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Simsek, E. ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC, USA ; Jianguo Liu ; Qing Huo Liu

A spectral integral method is presented for electromagnetic scattering from dielectric and perfectly electric conducting (PEC) objects with a closed boundary embedded in a layered medium. Two-dimensional layered medium Green's functions are computed adaptively by using Gaussian quadratures. The singular terms in the Green's functions and the non-smooth terms in their derivatives are handled appropriately to achieve exponential convergence. Numerical results, compared with the ones obtained by using other methods, demonstrate the spectral accuracy and high efficiency of the proposed method. They also confirm that the spectral integral method (SIM) is applicable to concave objects.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 6 )