By Topic

Scan blindness phenomenon in conformal finite phased arrays of printed dipoles

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ertürk, V.B. ; Dept. of Electr. & Electron. Eng., Bilkent Univ., Turkey ; Bakir, O. ; Rojas, R.G. ; Guner, B.

Scan blindness phenomenon for finite phased arrays of printed dipoles on material coated, electrically large circular cylinders is investigated. Effects on the scan blindness mechanism of several array and supporting structure parameters, including curvature effects, are observed and discussed. A full-wave solution, based on a hybrid method of moments/Green's function technique in the spatial domain, is used to achieve the aforementioned goals. Numerical results show that the curvature affects the surface waves and hence the mutual coupling between array elements. As a result, the array current distribution of arrays mounted on coated cylinders are considerably different compared to similar arrays on planar platforms. Therefore, finite phased arrays of printed dipoles on coated cylinders show different behavior in terms of scan blindness phenomenon compared to their planar counterparts. Furthermore, this phenomenon is completely different for axially and circumferentially oriented printed dipoles on coated cylinders suggesting that particular element types might be important for cylindrical arrays.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 6 )