By Topic

On artificial magnetodielectric loading for improving the impedance bandwidth properties of microstrip antennas

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

The effect of artificial magnetodielectric substrates on the impedance bandwidth properties of microstrip antennas is discussed. We review the results found in the literature and then focus on practically realizable artificial magnetic media operating in the microwave regime. Next, a realistic dispersive behavior of a practically realizable artificial substrate is embedded into the model. It is shown that frequency dispersion of the substrate plays a very important role in the impedance bandwidth characteristics of the loaded antenna. The impedance bandwidths of reduced size patch antennas loaded with dispersive magnetodielectric substrates and high-permittivity substrates are compared. It is shown that unlike substrates with dispersion-free permeability, practically realizable artificial substrates with dispersive magnetic permeability are not advantageous in antenna miniaturization. This conclusion is experimentally validated.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:54 ,  Issue: 6 )