Cart (Loading....) | Create Account
Close category search window
 

Generation of feasible set points and control of a cable robot

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
So-Ryeok Oh ; Dept. of Mech. Eng., Delaware Univ., Newark, DE, USA ; Agrawal, S.K.

Cable-suspended robots are structurally similar to parallel-actuated robots, but with the fundamental difference that cables can only pull the end-effector, but not push it. These input constraints make feedback control of cable-suspended robots a lot more challenging than their counterpart parallel-actuated robots. In this paper, we present a computationally efficient control design procedure for a cable robot with six cables, which is kinematically determined as long as all cables are in tension. The control strategy is based on dynamic aspects of statically feasible workspace. The basic idea suggested in this paper is to represent the reachable domain in terms of achievable set points under a specified control law that respects the input constraints. This computational framework is recursively used to find a set of reachable domains, using which, we are able to expand the region of feasibility by connecting adjacent domains through common points. The salient feature of the technique is that it is computationally efficient, or online implementable, for the control of a cable robot with positive input constraints. However, due to the complexity of the dynamics of general motion of a cable robot, we consider only translations. No cable interference is considered in this paper. Finally, the effectiveness of the proposed method is illustrated by numerical simulations and laboratory experiments on a six-degree-of-freedom cable-suspended robot.

Published in:

Robotics, IEEE Transactions on  (Volume:22 ,  Issue: 3 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.