By Topic

New family of zero-current-switching PWM converters using a new zero-current-switching PWM auxiliary circuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chien-Ming Wang ; Dept. of Electr. Eng., Nat. Ilan Univ., I-Lan, Taiwan

A new family of zero-current-switching (ZCS) pulsewidth-modulation (PWM) converters using a new ZCS-PWM auxiliary circuit is presented in this paper. The main switch and auxiliary switch operate at ZCS turn-on and turn-off, and the all-passive semiconductor devices in the ZCS-PWM converters operate at zero-voltage-switching (ZVS) turn-on and turn-off. Besides operating at constant frequency and reducing commutation losses, these new converters have no additional current stress and conduction loss in the main switch in comparison to the hard-switching converter counterpart. The PWM switch model and state-space averaging approach is used to estimate and examine the steady-state and dynamic character of the system. The new family of ZCS-PWM converters is suitable for high-power applications using insulated gate bipolar transistors (IGBTs). The principle of operation, theoretical analysis, and experimental results of the new ZCS-PWM boost converter, rated 1.6 kW and operating at 30 kHz, are provided in this paper to verify the performance of this new family of converters.

Published in:

IEEE Transactions on Industrial Electronics  (Volume:53 ,  Issue: 3 )