Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Enhanced thermal contact conductance using carbon nanotube array interfaces

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Xu, Jun ; Birck Nanotechnology Center, Purdue Univ., West Lafayette, IN ; Fisher, Timothy S.

Heat-conduction interfaces that employ carbon nanotube (CNT) arrays have been fabricated and studied experimentally using a reference calorimeter testing rig in a vacuum environment with infrared temperature measurements. Arrays of multiwalled CNTs are grown directly on silicon substrates with microwave plasma-enhanced chemical vapor deposition. Iron and nickel were used as CNT catalysts. CNT arrays grown under different synthesis conditions exhibit different pressure-contact conductance characteristics. The thermal contact resistance of CNTs with a copper interface exhibits promising results with a minimum value of 19.8mm2K/W at a pressure of 0.445MPa

Published in:

Components and Packaging Technologies, IEEE Transactions on  (Volume:29 ,  Issue: 2 )