By Topic

An approach for the formal verification of DSP designs using Theorem proving

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Akbarpour, B. ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Que., Canada ; Tahar, S.

This paper proposes a framework for the incorporation of formal methods in the design flow of digital signal processing (DSP) systems in a rigorous way. In the proposed approach, DSP descriptions were modeled and verified at different abstraction levels using higher order logic based on the higher order logic (HOL) theorem prover. This framework enables the formal verification of DSP designs that in the past could only be done partially using conventional simulation techniques. To this end, a shallow embedding of DSP descriptions in HOL at the floating-point (FP), fixed-point (FXP), behavioral, register transfer level (RTL), and netlist gate levels is provided. The paper made use of existing formalization of FP theory in HOL and a parallel one developed for FXP arithmetic. The high ability of abstraction in HOL allows a seamless hierarchical verification encompassing the whole DSP design path, starting from top-level FP and FXP algorithmic descriptions down to RTL, and gate level implementations. The paper illustrates the new verification framework on the fast Fourier transform (FFT) algorithm as a case study.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:25 ,  Issue: 8 )