Cart (Loading....) | Create Account
Close category search window
 

A clock generator with cascaded dynamic frequency counting loops for wide multiplication range applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Pao-Lung Chen ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Ching-Che Chung ; Jyh-Neng Yang ; Chen-Yi Lee

This work presents a clock generator with cascaded dynamic frequency counting (DFC) loops for wide multiplication range applications. The DFC loop, which uses variable time period to estimate and tune the frequency of the digitally controlled oscillator (DCO), enhances the resolution of frequency detection. The conventional phase-frequency detector (PFD) and programmable divider are replaced with a digital arithmetic comparator and a DCO timing counter. The value in the DCO timing counter is separated into quotient and remainder vectors. A threshold region is set in the remainder vector to reduce the influence of jitter variation in frequency detection. The loop stability can be retained by cascading two DFC loops when the multiplication factor (N) is large. The proposed clock generator achieves a multiplication range from 4 to 13 888 with output peak-to-peak jitter less than 2.8% of clock period. A test chip for the proposed clock generator is fabricated in 0.18-μm CMOS process with core area of 0.16 mm2. Power consumption is 15 mW @ 378 MHz with 1.8-V supply voltage.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:41 ,  Issue: 6 )

Date of Publication:

June 2006

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.