Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhiping Mu ; Dept. of Internal Medicine, Yale Univ. Sch. of Medicine, New Haven, CT ; Yi-Hwa Liu

Coded aperture (CA) imaging originally developed in X-ray astronomy has not been widely used in nuclear medicine due to the decoding complexity of near-field CA images. In this paper, we present a near-field CA imaging technique and image reconstruction method for high sensitivity and high resolution single photon emission computerized tomography (SPECT). Our approach makes three contributions. First, a correction method for the aperture collimation effect is used to eliminate the near-field artifacts without dual acquisitions of mask and anti-mask images. Second, a maximum-likelihood expectation-maximization (MLEM) deconvolution method is used to restore CA images. Finally, a new MLEM-based algorithm is used to partially reconstruct three-dimensional (3-D) objects from a single projection of CA images. Experiments conducted using a dual-head SPECT system equipped with a parallel-hole collimator and a CA module show a tenfold increase in count sensitivity and significant improvement in image resolution with CA collimation as compared to parallel-hole collimation. Experiments conducted using the same dual-head SPECT system equipped with a pinhole collimator show that when the object is closer to the pinhole collimator the CA image resolution is only slightly inferior to the pinhole collimated image. We found that the MLEM deconvolution method provides an inherent nonnegativity constraint on pixel values and remarkably reduces background activities of CA images. The MLEM reconstruction algorithm for CA images is capable of reconstructing 3-D objects from a single projection and can be potentially extended to full 3-D SPECT reconstruction for CA images

Published in:

Medical Imaging, IEEE Transactions on  (Volume:25 ,  Issue: 6 )