By Topic

Augmented vessels for quantitative analysis of vascular abnormalities and endovascular treatment planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. C. K. Wong ; Dept. of Comput. Sci., Hong Kong Univ. of Sci. & Technol., China ; A. C. S. Chung

Endovascular treatment plays an important role in the minimally invasive treatment of patients with vascular diseases, a major cause of morbidity and mortality worldwide. Given a segmentation of an angiography, quantitative analysis of abnormal structures can aid radiologists in choosing appropriate treatments and apparatuses. However, effective quantitation is only attainable if the abnormalities are identified from the vasculature. To achieve this, a novel method is developed, which works on the simpler shape of normal vessels to identify different vascular abnormalities (viz. stenotic atherosclerotic plaque, and saccular and fusiform aneurysmal lumens) in an indirect fashion, instead of directly manipulating the complex-shaped abnormalities. The proposed method has been tested on three synthetic and 17 clinical data sets. Comparisons with two related works are also conducted. Experimental results show that our method can produce satisfactory identification of the abnormalities and approximations of the ideal post-treatment vessel lumens. In addition, it can help increase the repeatability of the measurement of clinical parameters significantly

Published in:

IEEE Transactions on Medical Imaging  (Volume:25 ,  Issue: 6 )