By Topic

Toward architecture-based test-vector generation for timing verification of fast parallel multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eriksson, H. ; Dept. of Comput. Sci. & Eng., Chalmers Univ., Gothenburg, Sweden ; Larsson-Edefors, P. ; Eckerbert, D.

Fast parallel multipliers that contain logarithmic partial-product reduction trees pose a challenge to simulation-based high-accuracy timing verification, since the reduction tree has many reconvergent signal branches. However, such a multiplier architecture also offers a clue as how to attack the test-vector generation problem. The timing-critical paths are intimately associated with long carry propagation. We introduce a multiplier test-vector generation method that has the ability to exercise such long carry propagation paths. Through extensive circuit simulation and static timing analysis, we evaluate the quality of the test vectors that result from the new method. Especially for fast multipliers with a pronounced carry propagation, the timing-critical vectors manage to stimulate a path, which has a delay that comes close to the true worst case delay. We investigate the complexity and run-time for the test-vector generation, and derive timing-critical vectors up to a factor word length of 54 bits.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:14 ,  Issue: 4 )