By Topic

Adaptive Brownian dynamics Simulation for estimating potential mean force in ion channel permeation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Krishnamurthy, V. ; Dept. of Electr. & Comput. Eng., British Columbia Univ., Vancouver, BC, Canada ; Shin-Ho Chung

Ion channels are biological nanotubes formed by large protein molecules in the cell membrane. This paper presents a novel multiparticle simulation methodology, which we call adaptive controlled Brownian dynamics, for estimating the force experienced by a permeating ion at each discrete position along the ion-conducting pathway. The profile of this force, commonly known as the potential of mean force, results from the electrostatic interactions between the ions in the conduit and all the charges carried by atoms forming the channel the protein, as well as the induced charges on the protein wall. The current across the channel is solely determined by the potential of mean force encountered by the permeant ions. The simulation algorithm yields consistent estimates of this profile. The algorithm operates on an angstrom unit spatial scale and femtosecond time scale. Numerical simulations on the gramicidin ion channel show that the algorithm yields the potential of mean force profile that accurately reproduces experimental observations.

Published in:

NanoBioscience, IEEE Transactions on  (Volume:5 ,  Issue: 2 )