By Topic

Attribute-level neighbor hierarchy construction using evolved pattern-based knowledge induction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
T. Puthpongsiriporn ; Dept. of Ind. & Manuf. Eng., Oregon State Univ., Corvallis, OR, USA ; J. D. Porter ; B. Bidanda ; M. -E. Wang
more authors

Neighbor knowledge construction is the foundation for the development of cooperative query answering systems capable of searching for close match or approximate answers when exact match answers are not available. This paper presents a technique for developing neighbor hierarchies at the attribute level. The proposed technique is called the evolved pattern-based knowledge induction (ePKI) technique and allows construction of neighbor hierarchies for nonunique attributes based upon confidences, popularities, and clustering correlations of inferential relationships among attribute values. The technique is applicable for both categorical and numerical (discrete and continuous) attribute values. Attribute value neighbor hierarchies generated by the ePKI technique allow a cooperative query answering system to search for approximate answers by relaxing each individual query condition separately. Consequently, users can search for approximate answers even when the exact match answers do not exist in the database (i.e., searching for existing similar parts as part of the implementation of the concepts of rapid prototyping). Several experiments were conducted to assess the performance of the ePKI in constructing attribute-level neighbor hierarchies. Results indicate that the ePKI technique produces accurate neighbor hierarchies when strong inferential relationships appear among data.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:18 ,  Issue: 7 )