By Topic

Using emerging patterns to construct weighted decision trees

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alhammady, H. ; Dept. of Comput. Sci. & Software Eng., Melbourne Univ., Vic., Australia ; Ramamohanarao, K.

Decision trees (DTs) represent one of the most important and popular solutions to the problem of classification. They have been shown to have excellent performance in the field of data mining and machine learning. However, the problem of DTs is that they are built using data instances assigned to crisp classes. In this paper, we generalize decision trees so that they can take into account weighted classes assigned to the training data instances. Moreover, we propose a novel method for discovering weights for the training instances. Our method is based on emerging patterns (EPs). EPs are those itemsets whose supports (probabilities) in one class are significantly higher than their supports (probabilities) in the other classes. Our experimental evaluation shows that the new proposed method has good performance and excellent noise tolerance.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:18 ,  Issue: 7 )