Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Scheduling security-critical real-time applications on clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tao Xie ; Dept. of Comput. Sci., San Diego State Univ., CA, USA ; Xiao Qin

Security-critical real-time applications such as military aircraft flight control systems have mandatory security requirements in addition to stringent timing constraints. Conventional real-time scheduling algorithms, however, either disregard applications' security needs and thus expose the applications to security threats or run applications at inferior security levels without optimizing security performance. In recognition that many applications running on clusters demand both real-time performance and security, we investigate the problem of scheduling a set of independent real-time tasks with various security requirements. We build a security overhead model that can be used to reasonably measure security overheads incurred by the security-critical tasks. Next, we propose a security-aware real-time heuristic strategy for clusters (SAREC), which integrates security requirements into the scheduling for real-time applications on clusters. Further, to evaluate the performance of SAREC, we incorporate the earliest deadline first (EDF) scheduling policy into SAREC to implement a novel security-aware real-time scheduling algorithm (SAEDF). Experimental results from both real-world traces and a real application show that SAEDF significantly improves security over three existing scheduling algorithms (EDF, least laxity first, and first come first serve) by up to 266.7 percent while achieving high schedulability.

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 7 )