By Topic

Condition adaptation in synchronous consensus

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Izumi, T. ; Graduate Sch. of Inf. Sci. & Technol., Osaka Univ., Toyonaka, Japan ; Masuzawa, T.

The condition-based approach is one of the sophisticated methods used to overcome several impossibility results in the distributed consensus problem (e.g., impossibility of fault tolerance in asynchronous consensus or time complexity lower bounds in synchronous consensus). It introduces conditions on input vectors to specify subsets of all possible input vectors to consensus algorithms and condition-based algorithms can circumvent the impossibility if actual input vectors satisfy a particular condition. In this paper, we present a new condition-based paradigm for synchronous consensus. We introduce the new concept of adaptation on the time complexity of condition-based algorithms and present the adaptive condition-based approach to synchronous consensus. In our approach, all possible input vectors are classified into hierarchical conditions according to their difficulty called the legality level. The execution time of adaptive condition-based algorithms depends on the legality level of input vectors. We propose two adaptive condition-based algorithms for synchronous consensus. The first algorithm requires that the majority of processes be correct, and terminates within min{f+2, t+1} l rounds if lf holds.

Published in:

Computers, IEEE Transactions on  (Volume:55 ,  Issue: 7 )