Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Power-efficient data fusion assurance using direct voting mechanism in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hung-Ta Pai ; Graduate Inst. of Commun. Eng., Nat. Taipei Univ. ; Han, Y.S.

Wireless sensor networks place sensors into an area to collect data and send them back to a base station. Data fusion, which fuses the collected data before they are sent to the base station, is usually implemented over the network. Since the sensor is typically placed in locations accessible to malicious attackers, information assurance of the data fusion process is very important. A witness-based approach has been proposed to validate the fusion data. In this approach, the base station receives the fusion data and "votes" on the data from a randomly chosen sensor node. The vote comes from other sensor nodes, called as "witnesses," to verify the correctness of the fusion data. Because the base station obtains the vote through the chosen node, the chosen node could forge the vote if it is compromised. Thus, the witness node must encrypt the vote to prevent this forgery. Compared with the vote, the encryption requires more bits, increasing transmission burden from the chosen node to the base station. The chosen node consumes more power. This work improves the witness-based approach using direct voting mechanism. The witness node transmits the vote directly to the base station. Forgery is not a problem in this scheme. Moreover, fewer bits are necessary to represent the vote, significantly reducing the power consumption. Performance analysis and simulation results indicate that the proposed approach can achieve a 40 times better overhead than the witness-based approach

Published in:

Sensor Networks, Ubiquitous, and Trustworthy Computing, 2006. IEEE International Conference on  (Volume:1 )

Date of Conference:

5-7 June 2006