By Topic

Learning-Based SMT Processor Resource Distribution via Hill-Climbing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seungryul Choi ; Dept. of Comput. Sci., Maryland Univ. ; Yeung, D.

The key to high performance in simultaneous multithreaded (SMT) processors lies in optimizing the distribution of shared resources to active threads. Existing resource distribution techniques optimize performance only indirectly. They infer potential performance bottlenecks by observing indicators, like instruction occupancy or cache miss counts, and take actions to try to alleviate them. While the corrective actions are designed to improve performance, their actual performance impact is not known since end performance is never monitored. Consequently, potential performance gains are lost whenever the corrective actions do not effectively address the actual bottlenecks occurring in the pipeline. We propose a different approach to SMT resource distribution that optimizes end performance directly. Our approach observes the impact that resource distribution decisions have on performance at runtime, and feeds this information back to the resource distribution mechanisms to improve future decisions. By evaluating many different resource distributions, our approach tries to learn the best distribution over time. Because we perform learning on-line, learning time is crucial. We develop a hill-climbing algorithm that efficiently learns the best distribution of resources by following the performance gradient within the resource distribution space. This paper conducts an in-depth investigation of learning-based SMT resource distribution. First, we compare existing resource distribution techniques to an ideal learning-based technique that performs learning off-line. This limit study shows learning-based techniques can provide up to 19.2% gain over ICOUNT, 18.0% gain over FLUSH, and 7.6% gain over DCRA across 21 multithreaded workloads. Then, we present an on-line learning algorithm based on hill-climbing. Our evaluation shows hill-climbing provides a 12.4% gain over ICOUNT, 11.3% gain over FLUSH, and 2.4% gain over DCRA across a larger set of 42 multiprogrammed workloads

Published in:

Computer Architecture, 2006. ISCA '06. 33rd International Symposium on

Date of Conference:

0-0 0